

## Effect of morphology on the brittle ductile transition of polymer blends: 5. The role of CaCO<sub>3</sub> particle size distribution in high density polyethylene/CaCO<sub>3</sub> composites

Z. H. Liu, X. G. Zhu, Q. Li, Z. N. Qi\* and F. S. Wang

State Key Laboratory of Engineering Plastics, Institute of Chemistry, Academia Sinica, Beijing 100080, P. R. China

(Received 23 October 1996; revised 29 January 1997)

The effect of particle size distribution on the brittle ductile transition of high density polyethylene (HDPE)/CaCO<sub>3</sub> composites is studied. Fu and coworkers reported that the brittle ductile transition curves of HDPE/CaCO<sub>3</sub> composites obtained by plotting impact strength against matrix ligament thickness do not give a master curve. In this work, the splitting of brittle ductile transition master curve of the composites as matrix ligament thickness is smaller than its critical value at brittle ductile transition is demonstrated to be attributable to the effect of CaCO<sub>3</sub> particle size distribution on matrix ligament thickness. The critical matrix ligament thickness criterion proposed by Wu is thus valid for the brittle ductile transition of HDPE/CaCO<sub>3</sub> composites when the effect of particle size distribution on matrix ligament thickness is considered. The relations of critical particle size and of critical particle volume fraction at brittle ductile transition to particle size distribution are analyzed, respectively. A narrow particle size distribution is favourable to the enhancement of the toughness of polymer composites. © 1998 Elsevier Science Ltd. All rights reserved.

(Keywords: particle size distribution; brittle ductile transition; CaCO<sub>3</sub> toughened high density polyethylene)

### INTRODUCTION

The brittleness of plastics is one of the major problems that limit their applications in engineering. The toughening of polymers through the incorporation of spherical rubber particles has been proved to be an effective way to improve the impact toughness of plastics<sup>1</sup>. Interestingly the enhancement of impact properties of some pseudoductile polymers by introduction of non-elastomers, i.e.  $\text{plastics}^{2-8}$  and inorganic fillers<sup>9-15</sup>, has been achieved. The spherical particle filled plastics constitute an important class of polymer blends and composites. Therefore, the toughening mechanisms of these systems have attracted much attention.

In general, the spherical particles act as the stress concentrators to initiate and terminate crazes in the brittle polymer matrices and to initiate shear bands in the pseudoductile polymer matrices, which are responsible for the enhanced energy absorption  $^{1,16}$ . The morphology is a key factor determining the toughening efficiency. However, the morphological parameters as well as other factors influencing toughness are interrelated. The understanding of the effects of morphological parameters on toughness is very important not only for optimizing them to attain tough blends but also for the further investigation of the effects of other factors, i.e. the intrinsic ductility, interfacial adhesion and modulus of spherical particles.

The brittle ductile transition of polymer blends arising from the change in morphological parameters has been widely observed. It occurs when the rubber particle size (d) is smaller than a critical value ( $d_c$ ) of  $d^{17,18}$  or the rubber volume fraction ( $\phi$ ) is larger than a critical value ( $\phi_c$ ) of  $\phi$  at brittle ductile transition<sup>11-13</sup>.  $d_c$  increases with  $\phi$ . On the other hand,  $\phi_c$  increases with decreasing d. So, the brittle ductile transition depends not only on  $\phi$  but also on d. However, neither the plot of impact strength against d nor the plot of impact strength against  $\phi$  give the master curves of brittle ductile transition. Wu proposed the criterion of critical matrix ligament thickness  $(T_c, or critical surface-to$ surface interparticle distance) for rubber toughening<sup>17,18</sup>. The brittle ductile transition occurs when matrix ligament thickness (T, or surface-to-surface interparticle distance)equals  $T_c$ ; a blend is tough when  $T < T_c$ ; a blend is brittle when  $T > T_c$ . The interrelated effects of d and  $\phi$  on impact strength of polymer blends are thus assumed to be separated based on the criterion. T has been suggested to be a single morphological parameter determining the brittle ductile transition in the rubber toughened pseudoductile matrices, for instance, polyamide  $(PA)^{17,18}$ , polypropylene  $(PP)^{19,20}$ , polyoxymethylene  $(POM)^{21}$  and polyethylene terephthalate  $(PET)^{22}$ , polymethyl methacrylate<sup>23,24</sup>, polyvinyl chloride  $(PVC)^{25,26}$  and in high density polyethylene (HDPE)/CaCO<sub>3</sub> composites<sup>11-13</sup>

An interesting phenomenon is that the brittle ductile transition master curves obtained by plotting impact strength against *T* were observed in rubber toughened  $PP^{19,20}$ ,  $POM^{21}$  and  $PVC^{25,26}$ , but not in PA/rubber blends<sup>17,18</sup> and HDPE/CaCO<sub>3</sub> composites<sup>11-13</sup>. The brittle ductile transition curves of PA/rubber blends and HDPE/CaCO<sub>3</sub> composites are divorced from each other when  $T < T_c$ . While T is a single morphological parameter determining the critical behaviour. So, it would be interesting to clarify the splitting.

<sup>\*</sup> To whom correspondence should be addressed



Figure 1 Schematic illustrations of particle configurations (spatial packings): (a) well-dispersed; (b) pseudonetwork; and (c) flocculated. The solid symbols and the dash circles represent the dispersed particles and the pseudonetwork cores, respectively

In addition to d,  $\phi$  and T, the morphological parameters of binary polymer blends include the particle size distribution ( $\sigma$ ). We have derived a new equation for relating T to d,  $\phi$ and  $\sigma^{27}$ . The quantitative relationships between  $d_c$  and  $\sigma$  and between  $\phi_c$  and  $\sigma$  for PVC/nitrile rubber (NBR) blends have been established<sup>25,26</sup>. It has been found that: (1)  $d_c$  decreases with increasing  $\sigma$  for a given  $\phi$ . Moreover, the higher the  $\phi$ , the more quickly the  $d_c$  reduces with increasing  $\sigma$ . (2)  $\phi_c$ increases with  $\sigma$  for a given d. The larger the d, the more rapidly the  $\phi_c$  increases with  $\sigma$ . Therefore,  $\sigma$  is one of morphological parameters dominating the toughness and the toughening mechanisms of PVC/NBR blends in addition to d,  $\phi$  and T. (3) the  $T_c$  criterion is valid for PVC/rubber blends when the new equation is applied.

Although the  $\sigma$  values for PA/rubber blends<sup>17,18</sup> were not given by Wu, those for HDPE/CaCO<sub>3</sub> composites<sup>11-13</sup> can be found in ref. 13. In this paper, we present the effect of  $\sigma$ on the brittle ductile transition master curve and on  $d_c$  and  $\phi_c$  of HDPE/CaCO<sub>3</sub> composites. The influence of  $T_c$  on the relationships between  $d_c$  and  $\sigma$  and between  $\phi_c$  and  $\sigma$  in binary polymer blends is also discussed.

### MATRIX LIGAMENT THICKNESS

### The definition of particle size distribution

The log-normal distribution has been shown to be applicable for many polymer blends<sup>17,18,20,26-29</sup>. For log-normal distribution, the frequency  $(f(d_i))$  of a uniform particle size  $(d_i)$  is defined as

$$f(d_i) = \frac{1}{\sqrt{2\pi \ln \sigma}} \exp\left[\frac{-\left(\ln d_i - \ln d\right)^2}{2\ln^2 \sigma}\right]$$
(1)

where the average value of particle size d and its distribution  $\sigma$  are given by<sup>30</sup>

$$\ln d = \frac{\sum_{i=1}^{N} n_i \ln d_i}{\sum_{i=1}^{N} n_i}$$
(2)

where N is the number of particle grading,  $n_i$  the number of particles with a size,  $d_i$ , and

$$\ln \sigma = \sqrt{\frac{\sum_{i=1}^{N} n_i (\ln d_i - \ln d)^2}{\sum_{i=1}^{N} n_i}}$$
(3)

In the case of monodispersity,  $\sigma = 1$ ; and  $\sigma > 1$  when polydispersity.

#### The matrix ligament thickness

We shall show that T is a function of particle configuration (or spatial packing) elsewhere. Three particle dispersions are schematically illustrated in *Figure 1*. The solid symbols in this figure represent the particles of dispersed phase. *Figure 1a* shows the configuration of welldispersed particles. It consists of a polymer matrix and the well-dispersed particles. *Figure 1b* displays the particle configuration of pseudonetwork morphology. The pseudonetwork cores (the dash circles) and the pseudonetwork bands (consisting of a polymer matrix and the dispersed particles) comprise the pseudonetwork morphology. *Figure 1c* shows the configuration of flocculated particles. The last two types of particle configurations lead to smaller *Ts*.

Wu<sup>17,18</sup> has proposed an idealized equation for estimating T given by

$$T = d \left[ \left( \frac{\pi}{6\phi} \right)^{\frac{1}{3}} - 1 \right] \tag{4}$$

In fact, the particle size in equation (4) is assumed to be uniform-sized. We have pointed out that  $\sigma$  has a great influence on *T*, and derived a new equation for calculating *T* given by <sup>27</sup>

$$T = d\left[\left(\frac{\pi}{6\phi}\right)^{\frac{1}{3}} \exp(1.5\,\ln^2\sigma) - \exp(0.5\,\ln^2\sigma)\right]$$
(5)

We have shown that equation (5) is generally applicable to the binary polymer blends with the log-normal distribution of particle size and the particle configuration of well-dispersed particles.

### DISCUSSION

# The effect of particle size distribution on the master curve of brittle ductile transition

The *d* values of CaCO<sub>3</sub> particles obtained by Fu *et al.*<sup>11–13</sup> are 6.66, 7.44 and 15.9  $\mu$ m, respectively. The histograms of the particle size distributions for HDPE/CaCO<sub>3</sub> composites were given in ref. 13. In this work, the accumulative number of particles are plotted against particle size, the data were fitted by least-squares regression, as



Figure 2 Log-normal distribution plot for CaCO<sub>3</sub> particles



Figure 3 Notched Izod impact strength as a function of CaCO<sub>3</sub> volume fraction

show in *Figure 2*. *Figure 2* shows that the particles fit lognormal distribution. Thus, the *d* values are actually 5.4, 6.5 and 12.9  $\mu$ m. The corresponding  $\sigma$  values are 1.5, 1.54 and 1.6. In this study,  $\sigma$  increases with *d*. *Figure 3* shows the plot of notched Izod impact strength versus CaCO<sub>3</sub> volume fraction for the composites. The brittle ductile transitions are found to occur at the different  $\phi_c$ s.

The CaCO<sub>3</sub> particles were well dispersed in the HDPE matrix<sup>11-13</sup>. Thus, equation (5) can be used in the composites. If neglecting the influence of  $\sigma$  on T and T is calculated by equation (4), the notched Izod impact strength is plotted against matrix ligament thickness given in *Figure 4*. For the three particle sizes, the brittle ductile transition is found to occur at  $T_c = 4.5 \,\mu\text{m}$ . However, the three curves (dot lines) do not give one master curve (solid line). It is seen that the impact strength increases with the reduction of d when T is identical. This phenomenon becomes more evident when  $T < T_c$ .

If considering the influence of  $\sigma$  on T and T is calculated by equation (5), the notched Izod impact strength is plotted against matrix ligament thickness given in *Figure 5*. The data well fall on one master curve. For the three particle sizes, the brittle ductile transition is found to occur at  $T_c = 8.6 \,\mu\text{m}$ .



**Figure 4** Notched Izod impact strength as a function of matrix ligament thickness by neglecting the influence of CaCO<sub>3</sub> particle size distribution. The dot lines are experimental results. The solid line is fitted by equation (6) in the case of  $T < T_c$ 



**Figure 5** Notched Izod impact strength as a function of matrix ligament thickness by considering the influence of CaCO<sub>3</sub> particle size distribution. The solid line is fitted by equation (6) in the case of  $T < T_c$ 

A master curve may be drawn by polynomial regression through

$$IS = A_0 + A_1 T + A_2 T^2 \tag{6}$$

where IS is the notched Izod impact strength, and  $A_0, A_1$  and  $A_2$  are constants.

The effect of  $\sigma$  on the brittle ductile transition of CaCO<sub>3</sub> composites can be quantitatively analyzed by correlation coefficient and standard deviation. The parameters of equation (6) used for fitting data in *Figures 4 and 5* when  $T < T_c$  are listed in *Table 1*.  $A_0$ ,  $A_1$  and  $A_2$  are different for the two figures. Therefore, two equations are obtained. *Table 2* gives the correlation coefficient and standard deviation of the two equations. Compared with *Figure 4*, *Figure 5* shows a master curve with much larger correlation coefficient and markedly smaller standard deviation because of the consideration of the influence of  $\sigma$  on *T*.

The present study clearly shows that the  $T_c$  criterion is valid for the brittle ductile transition of HDPE/CaCO<sub>3</sub> composites when the effect of  $\sigma$  on T is evaluated. In an independent study we have already obtained a master curve

**Table 1** The results of polynomial regression for *Figures 4 and 5* in the case of  $T < T_c$ 

| Parameter        | Value    |          | Standard deviation |          |
|------------------|----------|----------|--------------------|----------|
|                  | Figure 4 | Figure 5 | Figure 4           | Figure 5 |
| $\overline{A_0}$ | 745      | 1177     | 377                | 200      |
| $A_1$            | 98       | -116     | 283                | 72       |
| $A_2$            | -52      | -0.344   | 50                 | 6.2      |

**Table 2** The correlation coefficient and standard deviation of equation (6) used to fit data of *Figures 4 and 5* in the case of  $T < T_c$ 

| Parameter          | Figure 4                    | Figure 5                              |
|--------------------|-----------------------------|---------------------------------------|
| Fitting equation   | $745 + 98T - 52T^2$<br>0.85 | $\frac{1177 - 116T - 0.344T^2}{0.96}$ |
| Standard deviation | 121                         | 65                                    |

for PVC/NBR blends based on equation (5). As a result, *T* is a critical morphological factor dominating the brittle ductile transition of polymer blends.

# The effect of particle size distribution on the critical particle volume fraction and the critical particle size

For the given d and  $\sigma$ , the impact strength of HDPE/ CaCO<sub>3</sub> composites is a function of CaCO<sub>3</sub> content. The brittle ductile transition is found to occur at varying  $\phi_c s$ (0.07, 0.098 and 0.22, respectively). Because  $\sigma$  increases with d,  $\phi_c$  increases with d, as shown in *Figure 3*. Rearranging equation (5) we have

$$\phi_c = \frac{\pi}{6} \left[ \frac{\exp(1.5 \ln^2 \sigma)}{\frac{T_c}{d} + \exp(0.5 \ln^2 \sigma)} \right]^3 \tag{7}$$

Figure 6 shows the calculated variations of  $\phi_c$  as a function of  $\sigma$  at constant d and  $T_c$  for the composites. Clearly  $\phi_c$ is not a constant for a given d, and increases with  $\sigma$ . The larger the d, the more rapidly the  $\phi_c$  increases with  $\sigma$ . A small  $\sigma$  does not possess a significant impact on  $\phi_c$ . However, this effect is marked in the range of large  $\sigma$ . For a very larger  $\sigma$ , the brittle ductile transition cannot take place. For instance, if  $d = 12.9 \,\mu\text{m}$  and the phase inversion occurs at  $\phi$ = 0.5, the maximum value ( $\sigma_{max}$ ) of  $\sigma$  for the onset of brittle ductile transition is 1.9. The brittle ductile transition disappears when  $\sigma \ge \sigma_{\text{max}}$ . The dependence of  $\phi_c$  on  $\sigma$  is found to be associated with  $T_c$  as predicted by equation (7). Figure 7 schematically displays the influence of  $T_c$  on the dependence of  $\phi_c$  on  $\sigma$  when  $d = 5 \,\mu\text{m}$ . It is seen that the larger the  $T_c$ , the less remarkable the effect of  $\sigma$  on  $\phi_c$ . For a given  $\sigma$ , the larger the  $T_c$ , the lower the  $\phi_c$ . A low  $\phi_c$  means that the brittle ductile transition takes place more easily. Consequently, a large  $T_c$  is favourable to the brittle ductile transition.

According to equation (5) the relation of  $d_c$  to  $\phi$ ,  $\sigma$  and  $T_c$  is

$$d_c = \frac{T_c}{\left(\frac{\pi}{6\phi}\right)^{\frac{1}{3}} \exp(1.5\,\ln^2\sigma) - \exp(0.5\,\ln^2\sigma)} \tag{8}$$

If experiments are done to obtain the plot of impact strength as a function of d at constant  $\phi = 0.07$ , 0.098 and 0.22, the corresponding  $d_c$  values, 5.4, 6.5 and 12.9  $\mu$ m, are expected. *Figure* 8 shows the calculated variations of  $d_c$  as a



**Figure 6** Calculated variations of  $\phi_c$  as a function of  $\sigma$  at a constant  $T_c$  and the various *d* values for the HDPE/CaCO<sub>3</sub> composites



**Figure 7** Calculated variations of  $\phi_c$  as a function of  $\sigma$  at a constant *d* and the various  $T_c$  values for binary polymer blends



**Figure 8** Calculated variations of  $d_c$  as a function of  $\sigma$  at a constant  $T_c$  and the various  $\phi$  values for the HDPE/CaCO<sub>3</sub> composites

function of  $\sigma$  at constant  $\phi$  and  $T_c$  for the composites. The expected experimental  $d_c$ s are indicated in this figure. For a given  $\phi$ ,  $d_c$  is not a constant too, and decreases with increasing  $\sigma$ . The higher the  $\phi$ , the more significant the influence of



**Figure 9** Calculated variations of  $d_c$  as a function of  $\sigma$  at a constant  $\phi$  and the various  $T_c$  values for binary polymer blends

 $\sigma$  on  $d_c$ . Even a small  $\sigma$  will considerably reduce  $d_c$ . Nevertheless, the effect resulting from  $\phi$  tends to disappear in the range of larger  $\sigma$ .  $d_c$  will be very small for blends with very large  $\sigma$ . While very small particles cannot toughen a matrix<sup>31-44</sup>. It is thus expected that the brittle ductile transition cannot be observed for blends with very large  $\sigma$ . When  $\phi = 0.1$ , the effect of  $T_c$  on the relation of  $d_c$  to  $\sigma$  is schematically illustrated in *Figure 9*. The calculated variations indicate that the larger the  $T_c$ , the more significant the effect of  $\sigma$  on  $d_c$ . Clearly a large  $T_c$  results in a large  $d_c$  for a given  $\sigma$ , which favours the brittle ductile transition.

The understanding of the effect of  $T_c$  on  $d_c$  and  $\phi_c$  is very important in the toughening of a matrix polymer with the rigid filler. For instance, to supertoughen PE with CaCO<sub>3</sub> a tough matrix that would lead to a large  $T_c$  must be employed. If the Izod impact strength of pure PE is small, i.e. smaller than 100 J/m, the brittle ductile transition of the composites has not yet been observed. When a tough matrix is used, for instance, the Izod impact strength is 175 J m<sup>-1</sup>, the brittle ductile transition of the composites occurs, as shown in *Figure 3*. Another example is the polypropylene/ kaolin composites<sup>15</sup>.

Wu proposed that  $T_c$  is a material property of the matrix for a given mode, temperature and rate of deformation<sup>17,18</sup>. Based on this assumption, Wu derived the relationship between  $T_c$  and the intrinsic ductility of the matrix polymer given by<sup>22,24</sup>

$$\log T_{\rm c}(\mu \rm{m}) = 0.74 - 0.22C_{\infty} \tag{9}$$

where  $C_{\infty}$  is the characteristic ratio for a coiled polymer chain, and is a measure of the intrinsic ductility. The tougher the matrix polymer, the smaller the  $C_{\infty}$ .

However, we have shown that  $T_c$  is a function of interfacial adhesion<sup>44,45</sup>, spatial packing of dispersed particles in the matrix<sup>26</sup> and the modulus of the dispersed phase<sup>46</sup>. The  $T_c$  of PVC/NBR blends reduces with the enhancement of interfacial adhesion. The  $T_c$  of PVC/NBR blends with the morphology of well-dispersed rubber particles is much smaller than that with the pseudonetwork morphology. The  $T_c$  of PP/ethylene propylene diene monomer (EPDM) blends is larger than that of PP toughened with the EPDM shell/HDPE core particles. So  $T_c$  is not a material property of the matrix. Therefore, these factors influence the relations of  $d_c$  to  $\sigma$  and of  $\phi_c$  to  $\sigma$ .

### CONCLUSIONS

The understanding of the role of T as a single morphological parameter determining the brittle ductile transition of polymer blends and composites will provide a deep insight into the effects of additional morphological parameters and other factors on the toughness of polymer blends and composites.  $T_c$  is a constant for a given blend system along with a given mode, temperature and rate of deformation. The identification of the effects of additional morphological parameters needs the separation of these variables based on equation (5). Moreover, the understanding of the effects of other factors, i.e. the intrinsic ductility, interfacial adhesion and the modulus of spherical particles, requires the separation of the effects of other factors from those of morphological parameters by equation (5).

In this work, the splitting of the brittle ductile transition master curve reported by Fu and coworkers has been attributed to the effect of  $\sigma$  on T. A brittle ductile transition master curve has been obtained by plotting impact strength against T calculated by equation (5). So, the  $T_c$  criterion proposed by Wu is valid for the brittle ductile transition of HDPE/CaCO<sub>3</sub> composites when the effect of  $\sigma$  on T is considered. This further confirms that T is a single morphological parameter determining the brittle ductile transitions of polymer blends and composites.

 $\phi_c$  is not a constant for a given *d*, and increases with  $\sigma$ . For a given  $\phi$ ,  $d_c$  is not a constant too, and decreases with increasing  $\sigma$ . Therefore, a small  $\sigma$  is favourable to the toughening of HDPE. The influence of  $\sigma$  on  $\phi_c$  is related to *d*. The larger the *d*, the more rapidly the  $\phi_c$  increases with  $\sigma$ . The influence of  $\sigma$  on  $d_c$  is also connected with  $\phi$ . The higher the  $\phi$ , the more quickly the  $d_c$  decreases with increasing  $\sigma$ .

In general, the tougher the matrix, the larger the  $T_c$ .  $T_c$  considerably affects the relations of  $\phi_c$  to  $\sigma$  and of  $d_c$  to  $\sigma$  in polymer blends and composites. The larger the  $T_c$ , the less rapidly the  $\phi_c$  increases with  $\sigma$ , but the more quickly the  $d_c$  decreases with increasing  $\sigma$ . The calculated variations indicate that the larger the  $T_c$ , the lower the  $\phi_c$ , and the larger the  $d_c$ . In other words, a large  $T_c$  favours the brittle ductile transition of polymer blends and composites.

### ACKNOWLEDGEMENTS

We wish to thank NSFC (China) for financial support of this work.

### 1. Glossary of symbols and terms

- $A_0$  Constant of equation (6)
- $A_1$  Constant of equation (6)
- $A_2$  Constant of equation (6)
- $C_{\pi}$  Characteristic ratio for a coiled polymer chain (equation (9))
- *d* Particle size, defined by equation (2)
- $d_c$  Critical particle size at brittle ductile transition
- $d_i$  Uniform particle size (equation (1))
- $f(d_i)$  Frequency of a particle size,  $d_i$ , defined by log-normal distribution (equation (1))
- IS Impact strength (equation (6))
- N Number of particle grading (equations (2) and (3))
- $n_i$  Number of particles with a size,  $d_i$  (equations (2) and (3))
- T Matrix ligament thickness or surface-to-surface interparticle distance
- $T_c$  Critical matrix ligament thickness or critical surface-to-surface interparticle distance at brittle ductile transition
- $\sigma$  Particle size distribution, defined by equation (3)
- $\sigma_{\max}$  Maximum value of particle size distribution for the onset of brittle ductile transition. The brittle ductile transition cannot take place when  $\sigma \ge \sigma_{\max}$
- p Particle volume fraction
- $\phi_c$  Critical particle volume fraction at brittle ductile transition

2. List of acronyms

| EPDM | Ethylene propylene diene monomer |
|------|----------------------------------|
| HDPE | High density polyethylene        |
| NBR  | Nitrile rubber                   |
| PA   | Polyamide                        |
| PE   | Polyethylene                     |
| PET  | Polyethylene terephthalate       |
| POM  | Polyoxymethylene                 |
| PP   | Polypropylene                    |
| PVC  | Polyvinyl chloride               |

#### REFERENCES

- 1. Bucknall, C. B., *Toughened Plastics*. Applied Science, London, 1977.
- 2. Kurauchi, T. and Ohta, T., J. Mater. Sci., 1984, 19, 1699.
- 3. Koo, K. K., Inoue, T. and Miyasaka, K., *Polym. Eng. Sci.*, 1985, **25**, 741.
- 4. Fujita, Y., Koo, K. K., Angola, J. C., Inoue, T. and Sakai, T., *Kobunshi Ronbunshi*, 1986, **43**, 119.
- Angola, J. C., Fujita, Y., Sakai, T. and Inoue, T., J. Polym. Sci., Polym. Phys. Edn., 1988, 26, 807.
- Wu, X. Z., Ou, Y. C., Qi, Z. N., Zhu, X. G. and Choy, C. L., in Preprints of the Second Pacific Polymer Conference, Otsu, 1991, 26B32.
- Wu, X. Z., Ou, Y. C., Qi, Z. N., Zhu, X. G. and Choy, C. L., in Preprints of the Second Pacific Polymer Conference, Otsu, 1991, 26B33.
- Wu, X. Z., Ou, Y. C., Qi, Z. N., Zhu, X. G. and Choy, C. L., in Preprints of the Second Pacific Polymer Conference, Otsu, 1991, 26B34.
- 9. Li, D. M. and Qi, Z. N., Polym. Preprints, Japan (English Edn.), 1988, 37, 3H12.
- Li, D. M., Zheng, W. G. and Qi, Z. N., J. Mater. Sci., 1994, 29, 3754.
- 11. Fu, Q., Wang, G. and Shen, J., J. Appl. Polym. Sci., 1993, 49, 673.
- 12. Fu, Q. and Wang, G., J. Appl. Polym. Sci., 1993, 49, 1985.
- Liu, C. X., M.S. thesis, Chengdu University of Science and Technology, Chengdu, 1992.
   Zhu, X. G., Chen, H. L., Deng, X. H., Wang, D. X. and Qi, Z. N., in
- Proceedings of Polymer Processing Society IX Annual Meeting, Manchester, 1993, 06-23.
- 15. Ou, Y. C., Fang, X. P., Shi, H. Q. and Feng, Y. P., *Acta Polymerica Sinica*, 1996, **1**, 59.
- 16. Kinloch, A. J. and Young, J. Fracture Behaviour of Polymers. Applied Science, London, 1983.
- 17. Wu, S., Polymer, 1985, 26, 1855.

- 18. Wu, S., J. Appl. Polym. Sci., 1988, 35, 549.
- Jancar, J., DiAnselmo, A. and DiBenedetto, A. T., Polym. Commun., 1991, 32, 367.
- Wu, X., Zhu, X. and Qi, Z. in Proceedings of the 8th International Conference on Deformation, Yield and Fracture of Polymers, London, 1991, 78/1.
- 21. Flexman, E. A., Mod. Plast., 1985, 62, 72.
- 22. Wu, S., Polym. Eng. Sci., 1990, 30, 753.
- Gloaguen, J. M., Steer, P., Gailland, P., Wrotecki, C. and Lefebver, J. M., *Polym. Eng. Sci.*, 1993, 33, 748.
- 24. Wu, S., Polym. Int., 1992, 29, 229.
- 25. Liu, Z. H., Zhu, X. G., Zhang, X. D., Qi, Z. N. and Wang, F. S., *Acta Polymerica Sinica*, 1996, **4**, 468.
- Liu, Z. H., Ph.D. thesis, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 1994.
- 27. Liu, Z. H., Zhang, X. D., Zhu, X. G., Qi, Z. N. and Wang, F. S., *Polymer*, accepted.
- 28. Wu, S., Polym. Eng. Sci., 1987, 27, 335.
- Serpe, G., Jarrin, J. and Dawans, F., *Polym. Eng. Sci.*, 1990, **30**, 553.
  Irani, R. R. and Callis, F. C., *Particle Size: Measurement, Interpretation and Application.* Wiley, New York, 1963.
- 31. Matsuo, M., Japan Plats., 1968, **2**, 6.
- 32. Matsuo, M., Nozaki, C. and Jyo, Y., Polym. Eng. Sci., 1969, 9, 197.
- Matsuo, M., Ueda, A. and Kondo, Y., *Polym. Eng. Sci.*, 1970, 10, 253.
- 34. Bucknall, C. B. *Toughened Plastics*. Applied Science, London, 1977.
- 35. Breuer, H., Haaf, F. and Stabenow, J., J. Macromol. Sci. Phys., 1977, B14, 387.
- Morton, M., Cizmecioglu, M. and Lhila, R., Adv. Chem. Ser., 1984, 206, 221.
- Dunkelberger, D. L. and Dougherty, E. P., J. Vinyl Technol., 1990, 12, 212.
- Oostenbrink, A. J., Molenaar, L. J. and Gaymans, R. J., Polyamide-Rubber Blends: Influence of Very Small Rubber Particle Size on Impact Strength, poster given at the 6th Annual Meeting of the Polymer Processing Society, Nice, France, 18–20 April 1990.
- 39. Oshinski, A. J., Keskkula, H. and Paul, D. R., Polymer, 1992, 33, 268.
- 40. Wu, S., Polym. Int., 1992, 29, 229.
- 41. Dompas, D. and Groeninckx, G., Polymer, 1994, 35, 4743.
- Dompas, D., Groeninckx, G., Isogawa, M., Hasegawa, T. and Kadokura, M., *Polymer*, 1994, 35, 4750.
- Dompas, D., Groeninckx, G., Isogawa, M., Hasegawa, T. and Kadokura, M., *Polymer*, 1994, 35, 4760.
- 44. Liu, Z. H., Zhu, X. G., Zhang, X. D., Qi, Z. N., Choy, C. L. and Wang, F. S., *Acta Polymerica Sinica*, 1997, **3**, 283.
- Liu, Z. H., Zhu, X. G., Zhang, X. D., Qi, Z. N., Wang, F. S. and Choy, C. L., in *Proceedings of the First East Asian Polymer Conference*, Oct. 11–15, 1995, Shanghai, P.R. China, p. 80.
- 46. Zhu, X. G., Chen, Y. H., Deng, X. H., Qi, Z. N. and Choy, C. L., in *Proceedings of the International Symposium on Polymer Alloys and Composites*, Hong Kong, 1992, p. 193.